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ABSTRACT: The discussion concerns the  effects  of ion iz ing  rad ia t ion  
on pulse  format ion  be tween  conductors in  a cable .  

1. Neutrons and ), -rays produce  e l ec t r i c  f ie lds  in  insulators m a i n l y  

because  of po la r i za t ion  [ 1 - 5 ] ,  The  po ten t i a l  d i f ference be tween sheath 

and core  in  a c o a x i a l  cab le  is considered first s t a t i c a l l y  (a l l  quant i t ies  
independent  of t ime) .  

The  insulator  (d i e l ec t r i c  constant  e) f i l ts  the space  be tween two 

concent r ic  conduct ing cyl inders  with ri < rz (Fig. 1). The inner con- 

ductor  is shown with obl ique ha tching (0 < r < ri), w h i l e t h e o u t e r m e t a l  

sheath (r = rz) is thin enough for its absorption to be neg lec ted .  The  

neutrons or ) ' - rays  fa l l  no rma l ly  on the cab l e  from the  left .  

Let 5 be the m e a n  range of a Compton e lec t ron  in the insulator  in 

the l i ne  of mot ion  of a ) ' - ray .  A pos i t ive  ion remains  where the e l ec -  

tron was e jec ted ,  and the resul t ing e lec t r ic  d ipo le  has a momen t  whose 

components  are Px = - % 6 ,  py = 0, in which e 0 is the absolute e l e c -  
t ronic  charge.  

A neutron produces a reco i l  proton, which forms with the n e g a t i v e l y  

charged ion a d ipole  of opposite sign, Px = e ~ ,  py = 0, in which A is 

the range  of the r eco i l  proton. In what follows we consider  only the ef- 

fects  of ) , -rays,  as the neutron effect  can be deduced by changing the 
sign and rep lac ing  5 by A. 

Let I be the  number  of ) ' - rays  passing through 1 cmz to the le f t  of 

the cab l e  perpendicular  to the x-ax is .  At a point  whose coordinates  are  

x and y we have  

-- L (x, y) (1.1) 
J(x ,  y ) ~ l  exp ~ o  ' 

in which k0 is the range of the 7 - rays  in the insula tor  and L(x, y) is the 
d i s t ance  from the point  of ) , - ray entry to (x ,y ) .  Figure 1 gives 

L (x, y) = ] / r~  2 -- y~ q- x .  (1.2) 

The vo lume  densi ty n)' of the y - rays  absorbed in  the m a t e r i a l  is 

o ]  (~, y) 
n y ~ - -  O ~ g  - -  

.7 -- L (x, y) OL .[ -- L (x, y) (1.3) 

We assume that  k i  >~ 2q;  then for the shadow region 

1 1 
- -  ~,0 ~0 

Let there be one Compton e lec t ron  per N absorbed ) ' -rays.  T h e v o l -  
ume  densi ty of the Compton e lect rons  is 

n e = n .c /N .  (1.8) 

The  Compton e lec t ron  t ravels  a d is tance  8 a long the x -ax i s  from 
the point  of e jec t ion;  we assume that  5 << r z, and then the ent i re  d ie -  

l ec t r i c  is po lar ized .  The  vector  P0 for the i n i t i a l  po la r i za t ion  has the 
components  

-Pox = - -  eo6ne, Poy = 0. (1.9) 

This spa t i a l ly  inhomogeneous po la r i za t ion  gives a charge  densi ty 
different  from zero:  

P o =  - - d i v  P0" (1.10) 

From (1.4), (1.7), and (1.9) we find that  the bulk charge densi ty is 
constant  throughout the d i e l e c t r i c  and is 

eo6 
po = const = -- C, G ~ - ~  J (1.11) 

The  f ie ld  equat ions are  as follows for a homogeneous d i e l ec t r i c :  

divD-----4z~p0, D = 6 E ,  E = - - v a p ,  A @ = - - T p  D. (1.12) 

and these must  be solved subject  to the conditions that  the circles  r = ri 

and r = r z are equipotent ia l s .  For a solut ion of the form $(r) we have  

d, i ~ ( r 7 ; ) = 4 ~  
r dr T C "  ( i .13)  

s ince  (1.2) gives  8L/Sx = 1. Usually,  k0 >> 2r2, so we can  r ep l ace  (1.3) 
wi th  adequa te  accu racy  by 

In the shadow region (hor izonta l  ha tching in  Fig. 1) the y - r a y  flux 
is 

[ L1] J (x, y) = J exp - -  L - -  L1 - -  ~ - 1  

L - - ~ - ~  
= + ~xp - ~ + L1 ('~o 

Lr = 2 Y ~  0.5) 

in which k i is the  y-ray  range in  the core m a t e r i a l  and L l is the y - r a y  
path length  in the core. Also, 8Li /Sx = 0, so the absorbed u  
in the shadow region is 

[ ( 0./- (x, y) J L i _ 
n ' c = - -  Ox --  )~o exp - -~o  ~-LI ~ ' (1.6) 

Then 

~-r~r -- ~ Er 2~ Ci = T  cr  - T ,  

= T G R " - } -  C i l n r  q- C~, (1.14) 

in which C i and C z are  arbi t rary constants. To find C i we m u s t c a l c u -  
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l a t e  the to ta l  charge  at  r = h.  The surface of d iscont inui ty  in the polar-  

i za t ion  vector  has a surface charge  of densi ty  

(50 = -- (P~n -- Prn), (1.15) 

and the vector  a long  the normal  is d i rec ted  from m e d i u m  l into m e d i u m  

2. In this case m e d i u m  2 is the insulator ,  whi l e  m e d i u m  i is t h e m e t a l ,  

which has no po la r iza t ion .  The d i rec t ion  of the normal  coincides  with 

the  radius vec tor  r, so a t  the  c i r c l e  r = q 

ao = - -  Pot.  (1.16) 

As r = ri we have  x = r i cos ~o, y = r I sin r The shadow region cor- 

responds to the range  of angles  - - v / 2  < r < + r / 2 ,  whi le  the  in te rva l  

~r/2 < r 31r/2 is outside the shadow. As P0r = P0xcOS~0, we get  from 

(1 .4) ,  (1.7), and (1.9) that  for --~r/2 < ~0 < +tr/2 

F 1 - -  ]/'r~ ~ - -  (rl  s in  ~)2 + rx cos ~p 
50 (9)  ~,.C L ;% + 

1 1 

and for ~/~n < ~ < s/~ 

ao (q~)_= ~oC [ 1 -  ]/'~?2fl. (rl  si~o(p)~-~ r i cos  ~P] cos-p " (1.18) 

We see tha t  (1.17) gives  o0 > 0, whi le  (1.18) g ives  o0 < 0, as should 
be the case from phys ica l  considerat ions.  Let q0 be the to ta l  charge 

(per cm of cab l e  length)  ad jo in ing  r = ri:  

"/,= '/v* 'h~ 

q o : r , _ l , , ~ o ( e p ) d ( p : r ~ [  I Z o ( ~ ) d ~ +  / , ~ ~  (1.19) 

We m a k e  the substi tution ~ --- ~r + r in  the  second in tegra l  to get  

~rl~O qo = - -  ~ c .  (1.2o) 

From (1.12) and (1.14) we ge t  the r ad ia l  component  of the  induc-  

t ion vector  as 

(1.21) 

Gauss's theorem gives 

~ D n d S = 4 n q ,  (1.22) 

in  which the  in tegra l  is t aken  over a closed surface and q is the charge  

wi th in  tha t  surface.  In the present case,  the  in t eg ra l  is to be t a k e n o v e r  

the c i rc le  r = ri, and q is replaced by (1.20): 

Ci l 4g ( :~rt~k~ C ) .  (1.23) 

Then 

Ci = -  rf'-LoC - -  �9 (1.24) 

This C 1 is subst i tuted into (1.14) to ge t  for V = @(r2) - - r  the po-  
t en t i a l  d i f ference  be tween  core and sheath,  tha t  

B 
V = " E  - J ,  

" r~ 2 r~ 
B=~rF'a 1(~) --l-l-2(~'- --l)In (@i)] 

~o~ (1.26) 
a = NM~ 

2. Consider  now the effects  of a conduc t iv i ty  o in 'iche insulator  and 

of t i m e  var ia t ion  in the y - r a y  flux. This o has a eoml~tieated re la t ion  

to the rad ia t ion  intensi ty .  We have  assumed that  there  is only sl ight  y -  

ray absorpt ion in the cab le ,  so o = o(t) and is the same: a t  a l l  points in 

the insulator .  S imi l a r l y ,  we assume tha t  the d i e l ec t r i c  constant  e = e(t) 

is a known funct ion of t ime .  
Let R be the load res is tance jo in ing  the outer and inner conductors a t  

one end of the cable .  The load current  I(t) flows from the sheath to the 

core  and is 
v (t) 

I (t) = - - ~  (2.1) 

in  which V(t) is the p o t e n t i a l  d i f fe rence  be tween  those conductors.  We 

have  seen in  sec t ion  1 tha t  the y-ray  flux genera tes  a charge  densi ty  P0 

uniform throughout  the insulator ,  so the resuk ing  conduct ion current j 

w i l l  be rad ia l  and wi l l  be independent  of r Let p l ( r , t )  be the bulk 

charge  densi ty  due to the conduct ion.  Then Pl and j = oE are re la ted  by  

0Pl 
-~-  -l- z d iv  E = 0. (2.2) 

The f ie ld  equadon  

div D = e  d i v E =  4~p, (2.3) 

contains  the to ta l  v o l u m e  charge  densi ty  p, whose de r iva t i ve  with res- 

pec t  to t i m e  can  be put as the sum of two terms:  

Op 0pl . 0pc 
Ot - -  at -]- ' ~ "  (2,4) 

The result  is 

Op p Opo e ( t )  
ot + .~ ( t )  - -  o t  , ~ (t) = ~ .  ( 2 . 5 )  

We extend  (1.11) to a t i m e - v a r y i n g  y - r a y  f lux and put 

Opo eo8 
ot - -  - a . r  (t),  a = W - ~ "  ( 2 . 6 )  

A di f fe rence  from (1.11) is that  he re  and subsequently in  sect ions 2 

and 3 we denote  by I(t) the y - r a y  f lux through 1 cmz in 1 sec.  We as- 

sume tha t  i r rad ia t ion  of the cab le  starts a t  t = 0. Then obviously p(t = 
= 0) = 0, and (2.5) and (2.6) g ive  

! t t '  

d~ t' 

O o o 

(2.7) 

The  charge  densi ty  is aga in  constant  over the  vo lume  of the  d i e -  

l ec t r i e .  Poisson's equa t ion  is as follows for O(qt): 

a r  ~ r = -  - - g ~  p (e)., (2.8) 

and the  solut ion is 

o~ r .4 (t) 
Or - -  E r =  -~ / (t)-}- r 

1.2 
, ( r ,  t ) ~ - - - T l ( t ) + A ( t ) l n r q - A i ( t ) ,  (2.9) 

t f t" 

o o o 

Here A(I) and Ai(t) are  ce r ta in  functions of t ime ;  Al(t) does not af-  
f ec t  the  phys ica l  results,  so we can  put  i t  as zero. Then (2.9) g ives  

v (t) = r (r2, t) - -  r (r~, t ) =  

1 ( r , )  
= ~ - f ( t ) ( r~  2 - r l  2) -[- A (t) ln ~-i " (2.11) 
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The total charge q(t) per unit length of internal cylinder (r = r:) is 
found by setting r = rl in (2.9) and using (1.22): 

s(t)  [ ~ / ( t ) + A ( t ) ] .  (2.12) q (t) = - 

The total current Ii(t ) per unit length of internal cylinder is 2,to(t) X 
x Er(r = rl) or, from (2.9), 

r ?  q (t) 
I , i , ) = - - ~ ( l ) 2 ~ [ - ~ - / { t ) +  A (t)] = --~'. (2.13) 

Let L be the length of the cable. We assume that the charge carried 
by I(t) through the load R is distributed uniformly along the entire length 
of the cable, and so 

dq I (t) dqa 
dt - -  L - -  Ix (t) + --dt" (2.14) 

The term dq0/dt takes account of the change in surface charge ad- 
joining the cylinder r = r:. The extension of (1.20) to the transient case 
is 

dqo X. 
(2.1~) bJ it), b = :~r, ~- ~ a. d t - - - -  

Here J(t) and a are as in (2.6). We use (2.1) and (2.11)-(2.13) to 
get  for V(t) that 

dV V B (2.16) 
dt + T (1) - -  e (t) J" (t), 

where B is defined by (1.25) and 

t 1 2 In (r~ / r:) d In 8 
r ( t )  - ~(t) + ~ + - " ~ "  

(2.17) 

If V(t = 0) = 0, the solution to (2.16) is 

t t t' 

o o o 

(2.13) 

There is no difficulty in taking account of an external emf g(t) con- 
nected as shown in Fig. 2. Let R~ be the internalresis tanceofthesonrce;  
then (2.1) is replaced by 

V (t) - -  ~ (t) (2.19) 
I (t) = R + Rr 

The  above  arguments then g ive  for V(t) that 

dV V B (t(l~-'l~l)2)ln(r~/rd d-i- + ~-~ (t) - -  e (t) .r (t) + e s ~ (t), (2.20) 

in which 

t 1 2 In (r2 / r:) d In e 
TI (t) - -  ~ (t) + e (t)(R + /t~l) L -[- ~ "  

(2.21) 

We naturally assume that o(t = 0) = 0, soar t = 0, wehaveV(t  = 0) = 
= ~(t = 0) = ~0. Then 

t 

o 

t t "  

o o 

(2.22) 

I(t)  Jig) 

Usually g = const = $0, and then 

t i t" ~r(t) = B exp [ --  S Tl~a)] J(t') d~ 
o 0 o 

t 

o 

t t" 
t 21n(r~ /r l )  ~ e x p  d[3 

o o 

3. Consider a long cable in the quasi-stationary approximation. Let 
5~ and 3t~ be the self- inductance and resistance of unit length of cable. 
The x-axis lies along the axis of the cable, v(x, t) is the potential dif- 
ference between the core and sheath, and c is the speed of light i nva -  
cuum. The voltage drop in an element dx is (av/Sx)dx and has two 
components: the ohmic one ~ i (z , t )  d~ and the one due to self-induc- 
tion (~ /c  ~) 0 i / 0 0  dx. Then 

Ov . ~ Oi = - -  ~ - -  ~ -g/ - .  ( 3 . 1 )  

Let q(x, t) be the charge per unit length of internal cylinder. The 
conservation of charge is expressed by 

Oa Oi Oqo 
= -  ~ - h (~, t) + - ~ - .  (3 .2)  

Here I i(x, t  ) is the current due to the conduc~vity o(x,t) per unit 
length of core. We extend (2.12) and (2.137 to write for a long cable 
that 

s (z, t) r r:~ 
q (~, t) = - ~ [ - f  ! (~, t) + A (~, t ) ] ,  

q (~, t) s (z, t) 
I1 (x, t) - -  ~. (o~, t), ~' (x, t) = ~ ,  (3.3) 

where f(x,  t) is defined by a function analogous to (2.10): 

t 

[(x ,  t ) ~ - ~ e x p  - -  ~ • 
o 

t t "  , 

o 0 

We replace V(t) in (2.11) by --v(x, t) to get 

r 2  2 - -  y l  $ 
- - v ( x , t ) =  4 f ( x , t ) +  A (x ,  t) ln(r~/r : ) .  

An obvious extension of (2.15) is 

(3.4) 

(3.5) 

aqo (x, t) 
Ot - - - -  bJ  (x, t). (3,6) 
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Then (3.8)-(3.6)  allow us to put (8.2) as 

av [ t , 01he(x ,  07 

+ 2 In (r~/rr)  Oi Y (x, t )  ~ , T )  ~ = - - B S ( ~ ,  t)' (8.7) 

System (3.1) and (3.7) is the basis for future calculations. Let cl be 
the local speed of a signal along the cable,  C the capaci ty per unit 
length, and R* the wave impedance:  

c 8 
q = ~ f~ ' 0  ' C = ' 2  in (r~/rl)' 

i ~ l (82)  
R* =TV-~-- qC" 

Consider the case in which e(x, t )  = const = s ,  o(x, t )  = const = o, 
J(x,t) = J(t); then (3.1) and (3.7) give 

Ov ~ Oi 
~ + - ~ - N +  ~ = 0 ,  

Ov v t Oi B 
+ ~- + ~- ~ = ~  - g - d  ( t ) =  F(t).  (3.9) 

The left end of the cable is connected to a resister ~ and the right 

end m a resistor R I. Let L 0 be the length of the cable. The boundary 
conditions are 

1~4(0, t) = --  v(o, t), z = O; 

nli(Le, t)= o(L o t), x = L o (8.i0) 

We take the initial conditions as zero: 

i(x, 0) = 0, o(x, 0) = 0. (3.11) 

The problem is solved via a Laplace transformation with respect to 

time, i.e., we pass from the original ~o(x,t) to 

co 

(p (z,. t) + ~  ~pl (z, p) = .~ (p (~, t) e-Pt dt. (8.12) 

o 

The corresponding system for i l (x ,p)  and vl(x ,p)  is 

dvr / ~ ~.p ) 
-~7+~ + - 7 .  i~=0, 

( ,+{_)  ,dh  
v, + ~ "~'~ ~- Fr  (p). (3.13) 

The boundary conditions for these are - 

Boil (0, p) ~ -- el(O, p), Rti~(L~, p) = va(Lo, p). (3.14) 

The general solution to (8.18) is 

ix (z, p) = A~ ch ~tz + A~ sh ax, 

(v + t I ~  ~'/, 
~r(~, p ) = - n *  \p---~-TTF/ x 

FI (p) (3.15) X (AIsh~xz+  A~chax) + p + l / * "  

Here Al and Az are arbitrary constants, while 

(8.16) 

We take the part of the root that gives a > 0 for p > O. Substitution 
of (3.15) into (3.14) gives 

n F1 (p) X Vl(Lo, p ) =  1 ~  

We put 

c h a L o - -  t + (no~B*) PshaLo 
X ( ~ o +  nl )  ch r + [(BOB1 / n*) P + R*P-q  sh ~-Lo 

P =  [ ( p +  t / ~ ) / ( p +  t / ~ ) l  '/, 

t Lo 
v = u  q = ~ ,  ~ = ~ ,  

( q + t  h'/, 
V. = ~Lo, K = \ q -t- ~1~ j " 

(8.17) 

(3.18) 

Reverting to the originals, we have 
a+ico 

Br F, (p) 
v (Lo, t )= ~ S equ x 

a--leo 

[ch I ~ - -  t + (n0 / R*) K sh I ~] dq 
X ( R o + R x ) e h t ~ + [ ( R o I h / R , ) K + R . K - q s h l  ~ 

O.19) 

As sh x is odd, the integrand is a function of one sheet. The inte- 
gral of (3.19) is calculated along a vertical  line in a plane of q to the 

right of al l  poles in the integrand. 
As B << 1 for a sufficiently short cable, the most  substantial contri-  

bution to the integral  comes from poles with a finite value of q. We 
expand the numerator  and denominator  in (8.19) in powers of ~ to get  

I t a+icoO .Fl (p) dp 
v(Lo, t ) - -  t ~ y 2"~i ep t 

P + T1 - t  --- 
a--lo~ 

t 
B e-~/Tl .t" J (t') e v/T,  dr. (3.20) 

o 

H e r e  

[ 1 t t n ( r 2 / n ) +  I ( 1 + ~  , 

(R*) 2 1 t t 
= n 0 R 1  ' -~- = n--/+ -h-7" 

(8.21) 

We put 8 = const, ~" = const in (2.18) to get 

t 

B S et ' /r  V (t) = T e - t I t  J ( 0  dr, 
0 

t t 2 in (r~ / rl) (8.22) 
T -  z + --  8LR 

This solution coincides with (3.20) if  7 << 1. The example  shows 
that,  for (2.18) to apply, we must have not only L0 << cfr  but also R* << 
<< ",fRGR I. In part icular,  if  one end is open-circui ted (e.g, ,  R0 = ~o), then 
for L 0 << c1~-we can use (2.18), since wave effects are then unimportant.  

Without loss of generali ty we can consider only pulse irradiation: 

I (t) = 6 (t), f l  (p) =----.B (8.28) 
8 

Here 8(t) is a delta function. We envisage a long cable: B = I~ /c i r  >> 
>> 1. In (3.19) we replace ch ~ and sh g and eI~/2 >> 1 to get  

a+i~o 
B I ~ @)t dp (3.24) 

v(Lo...*z~, t ) =  - -  T ~ -  ~ p + t / z t + ( R * / R i ) P - 1  
a--ioo 

This formula does not contain R 0, i .e . ,  v(L 0, t) is independent of the 
load at the left end for 3 >> 1 and i(x, t )  becomes zero far from the 
right end. For simplici ty we assume that R r = R* (matched load). For 

~i > T we put 

t / 1  i \  p+  ~=,~,  ~ = ~ - \ x - ~ )  >0. 

We put the integral  of (8.24) as 
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B { t ~ cte slds 
v(Lo-'-) 0% t )=--  ~ e -t / ' '  ~ ]/'s"--S-+ 2as 

s ~ - ~ -  V ' ~  l 

' d1= 
B : - -  -~" e -t/'q {e -~ Io (~) -- e -~ I, (5)} = 

't f ,  t \  
~ =  ~ k T - ~ )  t > 0 ,  (3.25) 

in which Io(~) and I~(~) are Bessel functions of imaginary argument.  
I f r ~ < r  we put 

p ~ t / ~ = s ,  a = ' / 2  ( t / ~ , - - t / ~ ) > 0 ,  

The integral of (3.24) is transformed to 

B e_t/. " { i S aeStds 

"/= 

= - -  -~- e :tl" {e"'= Io(~) + e-~ Iz (~)} = 

= - -  "~- e x p B  [_~_ '  ( xl-- + ~ ) t ]  (Io (~)-}-I, (~)}, 

1 f " ~ 1  i 
~ =  ~ ~ 1 - -  ~ - ) ' >  o (8.26) 

We use asymptotic formulas for x >> 1: 

e x 
4 ( ~ ) = ~ [ ~  + ~ 

& ( z ) = ~  t = ~ + o  ~ (3.2'/) 

These relations give us the asymptotes to the solution to (3.24) 

v (Lo--* 0% t ~  o r  

- k ~ , l  -v' ~o~ .~,>-,. 

v ( L o ~ , t - - - . ~ ) =  

Let T = TX (the Heaviside case). If then R~ = R*, the integral of 
(3.19) can be transformed to 

! R* 
v (L0, t) = -~ i (t) - -  ~0---o--o--o--o--o-~ e -t ' /"  i (t - to) ~ (t - -  to)+ 

R* --  Ro e_~,to/~ [ (t --  2to) r I (t - -  2to), (3.29) 
+ 2(~o + ~*) 

in which to = L0/cx is the t ime taken by a signal to travel along a cable 

of length L0: 

a + i ~ o  t 
1 ](t) = ~-~ ~ e ~ F .  (p) d B e_tl ~ S j ( t , ) e t ,  l~dt; 

a--loo 0 

~1 (t < 0 ) = 0 ,  ~q (t > 0) = 1. (3.30) 

Still takin~ T = ~'l, we abandon R i = R* and put 

P +  ~ - -  to ' ~ = ~ 0 '  

L 
Boa - -  R* 

so lx0,~l < ~, IQI > ~, and for pulse irradiation we get 

(3.31) 

a t  

BRae -t/z 1 
v (Lo, t) = - -  8 (Ro ~- R*)(Rlq- R*) 2-~ X 

a+ico 
S - (Ro-F R*) e z z -  2R*e z + R * - R o  dz • ez~ e2 z __ Q-" ~ - .  (3.32) 

a---ioO 

The point z = 0 is not singular. For Q > 0 the first-order poles lie 

Zn = _ 1/~ in Q + izn (n = 0, ~ i,  ~ 2 . . ) .  (3.33) 

We replace the integral of (3.32) by the sum of  the residues: 

BRie-t/~ 
v (Lo,  t) = - - ~  Q-~/2 x 

co ei2nn ~ 

W,~O 

e i '~(2n+l)~ 

q- (Eo l fQ  - -  i) (]/-Q-~- i) ~ '/2 lnQ -- ir~(2n+ t)J" 
~ 0  

(3.34) 

If Q < 0, the poles lie at 

z n = - - ' / 2  I n l Q l q -  ia(n+'/2)  ( n =  0 , + , ,  :~2,...)r (3.35) 

The integral of (3.32) then becomes the sum 

BRle-tl �9 
v(Lo, t)__ e ! R I + R * )  I QI-v"~x 

x R e .  V 2 l n l Q I - - i ~ ( n + % )  x 

2JR* 1,/, + 3.o1 tl}" 
x [~ + R o - - 7 ~ E ~ t  Q Q (3.36) 

It is convenient to put (3,19) with J(t) = 5(t) as follows for some 
purposes: 

BR1 ~. a+i~ 
=+----fix 

.... a - - i c o  

eh 0 - -  i + (Ro/R*) f~ sh 0 (3.37) 
X (Bo + Ra) ch 0 -+- [(RoR1 / R*) ~ -~- R%2 -a] sh 0 

in which 

i ' t  t t t l i 

+-�88 
, (~ +,,,'~v,. (3.38) 

We perform the transformation 

I t 

lZzT=- i - - l=y  w - -  , z + t = ~ ,  

which transfers the outer part o f - - 1  < z < 1 to the exterior of unit circle 
lw[ > 1. Let initially T 1 > T, i .e. ,  w = +1. Then 
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t l 
v (Lo, t) = 2 ~ i8  (R~ + B * )  

X 

a+ieo 

- ; - x  
g--leo 

X (e ~ - -  t)  [(w + go) e ~ + Low + 11 dw (3.40) 

(w + M) (w + Xx) e ~~ - -  (who + t)(wXx + 1)" 

Ro ( ix  + o)  sin vy - -  R* (t - -  cos vy)  y dx 

•  y cos vy + [(t + T) ix + ( l  - -  "r) o] sin vy i x + o ~ '  

I__ I I 
= t r ~ - c ~  1, T = (-~*)~ (~o~)-~ ,  ~ -~o F-N~.  ( 3 . ~ 1  

From (3.19) we r ead i ly  fend that ,  i f  Rl = R*, 

v (Lo, t) [Ro=oo = v (2Lo, t) IRo=R*" (3.46) 

Here X0 and X1 are  as in (3 .3t) .  The in tegra l  of (3.40) can  also be  
ca l cu l a t ed  a long  a ve r t i ca l  l i ne  to the  r ight  of thepo les  in  the integrand.  

The  integrand in  (3.87) is of one sheet,  so the in tegra l  of (8.40) equals  

zero as t aken  on the c i r c l e  [wl = 1 (which corresponds to double  passage 

on --1 < z < 1 i n t h e  z p lane) ,  and so in  (3.40) we need take  account  

only of poles ly ing outside the unit  c i r c l e  [w l = 1. To find the  poles 
w = pe  ~r we have  

__ ~Lope r162176 + t )~lpe i~ + t 
Pei:~+ )~o PelV-} - ~1 " (3.417 

If p > 1 (p < 1), the r ight  part of this equa t ion  is less (greater)  in 

modulus than unity,  which m e a m  that  cos r < 0, i . e . ,  a l l  roots of 
(3.41) l i e  in the l e f t h a l f - p l a n e .  T h e s e m i e i r c l e  w = oR0 --~r/2 < r < ~r/2 

corresponds to double  passage in  0 < z < 1, so the in tegra l  of (3.407 

along this s e m i c i r c l e  is zero.  Then the in t eg ra l  of (3.407 can  be ca l cu -  
l a t ed  a long  Re w = 0 excep t  the part  jo ining the points - - i  and i: 

(Lo, t) = a s  (Rr + R*) 

co ~ ( x  I~ 

i 

• ( e ~ - - t ) [ ( i x + ) ~ o ) e S q - i L o x + l ]  dx  

(i~ 27 ~0) (iX ,-7 ~l) eg0 - -  (i~0z A7 t) (iLix @ t) 

o = g (~ + • (3.42) 
~ X l  

Now l e t  r l < r, i .e . ,  w = --1; formula  (3.37) transforms to 

~(Lo ,  t ) =  B i l l  e x p [  t ( l  , t ) ] •  

a+iCo 

a--ieo 

• (e ~ - -  1) [(w - -  X0) e ~ + ~0w - -  II  dw (3.43) 

(w - -  So) (w 7" Xr) e ~~ - -  (w~o - -  t) (wE1 - -  1) 

The  denominators  in (3.40) and (3.43) differ only in  the signs to X0 

and X 1, and the in tegra l  of (3.43) may  be put  as 

v(Lo ,  t ) =  aa (B1 + R . )  exp [ - - - f f \ T  

so 
�9 x 1 i i 

1 

We note  by ~(t) the solut ion v(Lo,t) for R 0 = 0, R 1 = R*. We now as- 

sume (purely formal ly)  tha t  we have  a cab le  of length  2L 0, with the 

parts 0 < x < L 0 and --L 0 < x < 0 having  equal  po lar iza t ions  opposite in  

sign. It  can be  shown that  ma tched  loads R 0 = R 1 = R* at  x = tL0 cause 
the vo l t age  at  x = Lo to be  $(t). The  phys ica l  s ign i f i cance  of these re- 
la t ionships is obvious. 

F ina l ly  we consider a thin cab le ,  for which 5 >> rz, and we can  as- 

sume that  the  fast e iect rons  formed a t  any point  in  the d i e l ec t r i c  m o v e  

in  the d i rec t ion  of the y - r a y  and s t r ike  the opposi te  m e t a l  surface.  We 
also assume tha t  the range of the Compton electrons in  the m e t a l  is so 

sma l l  tha t  we can  neg l ec t  escape from the core and sheath.  Here the 

v o l u m e  densi ty  of the absorbed y- rays  can  be found by  rep lac ing  exp in  

(1.3) and (1.6) by  unity:  

or 
ey = - -  (3.47) 

~,o ' 

where J denotes the to ta l  current,  as in sect ion 1. S ince  311 the fast 

e lectrons s t r ike  e i ther  the core or the s h e a ~ ,  the d i e l ec t r i c  has a posRive 

charge,  and (1.8) gives  the charge  densi ty  as 

eoor (3.48) 
po - -  NXo 

Unit  l eng th  of the  in t e rna l  cy l inder  has the nega t ive  charge  

c2o = - -  poS = - -  cos or (3.49) 
NLo ' 

in which S is the area of the region in Pig. I def ined by x < 0,[yl < rt,  
r 1 < r = (x z + y Z ) l / 2  < H .  With s i n a  = rr / r  z we have  

5" = r~ ~" [ct + sin a cos a - -  1/~ ~ (sin a)~]. (3.50) 

The  pos i t ive  space  charge  of (3.48) and the n e g a t i v e  charge  of 

(8.497 g ive  a f ie ld  hav ing  the po t en t i a l  

(r) = - -  ~ par ~" + C~ In r + Us. (3.51) 
g. 

in which 

C~--eN---~o--2e~ [~ + sin a cos c* + =~_ ~ (sin c@ ~] or. (3.52) 

The  po t en t i a l  d i f ference V = ~(rs7 --$0"1) be tween  the m e t a l  parts 
m a y ,  by ana logy  with (1.26), be wri t ten  as 

V = B~* or, 

Al l  the  r ema in ing  theory for thin cables m a y  be derived from the 
above i f  the  B of (1.25) is everywhere  rep laced  by  the I3" of (3.537. 

I a m  indeb ted  to G. M. Gande l 'man ,  F. M. Gudin, G. F. Io i lev ,  

and S. A. Kuchai  for v a l u a b l e  discussions. 

X (e ~ - -  t) [(ix - -  ~.o) e ~ + i~oX - -  t1 dx 

( i s  - -  ~.o) ( ix  - -  ~1) e ~~ - -  ( iMx  - -  t) (i~.xz - -  1) " 

iv  

Returning to (3.37), we see tha t  we m a y  take  the i m a g i n a r y  axis  
Re z = 0 as the l i ne  of in tegra t ion ,  so the in tegra l  of (3.37) may  be put 

as 
co 

B exp - - 7  T T1/J v (Lo, t) = --  :~eRo 
o 
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