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ABSTRACT: The discussion concerns the effects of ionizing radiation
on pulse formation between conductoss in a cable.

1. Neutrons and y -rays produce electric fields in insulators mainly
because of polarization [1-5]. The potential difference betweensheath
and core in a coaxial cable is considered first statically (all quantities
independent of time).

The insulator (dielectric constant g) fills the space between two
concentric conducting cylinders with ry < r, (Fig. 1). The inner con-
ductor is shown with oblique hatching (0 < r < 1), whilethe outermeétal
sheath (r = ,) is thin enough for its absorption to be neglected. The
neutrons or y -rays fall normally on the cable from the left.

Let § be the mean range of a Compton electron in the insulator in
the line of motion of a y-ray. A positive ion remains where the elec-
tron was ejected, and the resulting electric dipole has a moment whose
components are py = —eg, Py = 0, in which ey is the absolute elec-
tronic charge.

A neutron produces a recoil proton, whichforms withthe negatively
charged ion a dipole of opposite sign, px = €A, py = 0, in which A is
the range of the recoil proton. In what follows we consider only the ef-
fects of y-rays, as the neutron effect can be deduced by changing the
sign and replacing § by A.

Let J be the number of y-1ays passing through 1 cm? to the left of
the cable perpendicular to the x-axis. At a point whose coordinatesare
x and y we have
—L(=y
R (1.1)

J(@, y)=J exp —_

in which A, is the range of the y-rays in the insulator and L(x, y) is the
distance from the point of y-ray entry to (x,y). Figure 1 gives

Lz, y)=Vre— ¥+ (1.2)

The volume density ny of the y -rays absorbed in the material is

o7 (=, y)
Ty =— dx -
_ — L@yl J  —Ly)
Vi S vt Ll vl R Vet (1.8)

since (1.2) gives 8L/0x = 1. Usually, Ay > 21, so we can replace (1.3)
with adequate accuracy by

L[ V] .
nY=K[1_-T*- (1.4)

In the shadow region (horizontal hatching in Fig. 1) the y-ray flux
is

- L —Ig Ly
Ty =Jexp| - T — 2=
L 41 1
= Jexp [‘;T,‘*‘ L (Trx—l)]
Li=2VrE—p (1.5)

in which A, is the y-1ay range in the core material and L, is they -ray
path length in the core. Also, 8L;/0x = 0, so the absorbed y-ray density
in the shadow region is

aJ (z,y) J L 1 1
n, =-— o =T0exp [—H 4+ Is (T;——M-)-! (1.6)
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We assume that Ay > 2ry; then for the shadow region

n,6 —=
Y

:%‘,—’1_ VW+x+2 (‘;37“71;) VrT:.Tﬁ] L.mn

Let there be one Compton electron per N absorbed y-rays. The vol-
ume density of the Compton electrons is

n, = rLY/N. (1.8)

The Compton electron travels a distance § along the x-axis from
the point of ejection; we assume that § < s, and then the entire die-
lectric is polarized. The vector P, for the initial polarization has the
components

Pox = eﬂﬁney

Py = 0. (1.9)
This spatially inhomogeneous polarization gives a charge density
different from zero:
po = — div P,. (1.10)
From (1.4), (1.7), and (1.9) we find that the bulk charge density is
constant throughout the dielectric and is

2]
po = const = — C, C = Vet

J (1.11)

The field equations are as follows for a homogeneous dielectric:
4 -
divD=4npm, D=cE, E=—of, Ap=——ip. (112)

and these must be solved subject to the conditions that the circles r =
and 1 = r, are equipotentials. For a solution of the form ¥(r) we have

1t d d 4t
+a 2= (1-18)
Then
dp - 2n [
o= E =0 —
p=Cr + Cilnr 4 Ca, 1.14)

in which C; and C; are arbitrary constants. To find C; we mustcalcu-




late the total charge at 1 = ;. The surface of discontinvity in the polar-
ization vector has a surface charge of density

6y = — (Pon — P1n), (1.15)

and the vector along the normal is directed from medium 1 into medium
9. In this case medium 2 is the insulator, while medium 1 is themetal,
which has no polarization. The direction of the normal coincides with
the radius vector r, so at thecircler=n

Gp = — Pop (1.18)

Asr =1, we have x = rj cos ¢, y =13 sin ¢. The shadow region cor-
responds to the range of angles -7/2 < ¢ < +7/2, while theinterval
/2 < v 3n/2 is outside the shadow. As Pyr = Pgx cos¢, we get from
(1.4), (1.7), and (1.9) that for =7/2 < ¢ <+7/2

%0 (9) = DG [ 1 — Ve = s‘foq’) aseLi SN

+ 2(%—%;) rlcoqu] €os @ (1.17)

and for Yon < @ <3/ n

- B '-—2-:———’—“—2' .
wg—toc[t— LEZOIRP LN . g

We see that (1.17) gives gy > 0, while (1,18) gives ¢ < 0, asshould
be the case from physical considerations. Let qy be the total charge
(per cm of cable length) adjoining r = 1;:

3/,.1-. R o 3fem
| s@do=n] { awe+ {a@a]. @19

~m —fet am

Go=—T"1

We make the substitution ¢ — 7+ ¢ in the second integral to get

xr
go=—"—3—"C (1.20)

From (1.12) and (1.14) we get the radial component of the induc-
tion vector as

2n Cy
D, = 8[_8— Cr + T} (1.21)
Gauss's theorem gives

<§>Dﬂd.«=4nq, (1.22)

in which the integral is taken over a closed surface and q is the charge
within that surface. In the present case, the integral is to be takenover
the circle r = 1y, and q is replaced by (1.20):

2 G %,
— 2mre [——cn + ]_ 4n ( “’;l ® ¢ ) (1.28)
Then
2n 1 1
o =2 rinag (-~ 75)- (1.29)

This C; is substituted into (1.14) to get for V = ¥(1;) —¥(ry), the po-
tential difference between core and sheath, that

v =o-J,
B=rnra U 3)2_14-2(—%‘1— —1) ln (—;ﬂ
a=7:,%5 (1.25)

2. Consider now the effects of a conductivity o in the insulator and
of time variation in the y-ray flux. This o has a complicated relation
to the radiation intensity. We have assumed that there is only slight y -
ray absorption in the cable, so o = o(t) and is the same at all points in
the insulator. Similarly, we assume that the dielectric constant & = e(t)
is a known function of time.

Let R be the load resistance joining the outer and inner conductorsat
one end of the cable. The load current I(t) flows from the sheath to the
core and is

I(t)= Y—(i) (2.1)
in which V(t) is the potential difference between those conductors. We
have seen in section 1 that the y-ray flux generates a charge density py
uniform throughout the insulator, so the resulting conduction cuirent j
will be radial and will be independent of ¢. Let py(r,t) be the bulk
charge density due to the conduction. Then p; and j = o arerelated by

2o ivE=0
o TodivE=20 (2.2)

The field equation
div D = ¢ divE = 4np, (2.3)
contains the total volume charge density p, whose derivative withres-
pect to time can be put as the sum of two terms:

80 9p1 | Opo

= T @4
The result is
We extend (1.11) to a time~varying y -ray flux and put
o —ar), o= 1{;",‘302 2.6)

A difference from (1.11) is that here and subsequently in sections 2
and 3 we denote by J(t) the y-ray flux through 1 em® in 1 sec, We as-
sume that irradiation of the cable starts at t = 0. Then obviously p(t =
=0)=0, and (2.5) and (2.6) give

e

t
wrly e U e e
G

P(l)=-aexr)[—~5 )

The charge density is again constant over the volume of the die-
lectric. Poisson's equation is as follows for ¥(i;t):

) i 4 ap 4n
A*l’:?:a;('—ar):—ﬁm(t)‘, 8)

and the solution is

o 4(t)
r=—Eh=3
Ve D=1 O+ A0 r+ 40, @9

@ :—:-'%— exp[ St (u)] C.I(t,)exp [zS T(B)]dt’ (2.10)

Here A(t) and A,(t) are certain functions of time; Al(t) does not af-
fect the physical results, so we can put it as zero. Then (2.9) gives

V=% (rs, ) —Piry, )=

=T —rD)+ A ln( > (2.11)
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The total charge q(t) per unit length of internal cylinder (r = ;) is
found by setting r = 1y in (2.9) and using (1.22):

1) =—G[F 10+ 0] (2.12)
The total current I)(t) per unitlengthof internal cylinder is 2ro(t) X
X Ex(r = ry) or, from (2.9),

2
L)=—s() Zn[%-f(t‘)+A(t)]=:§—((ti))-. (2.13)

Let L be the length of the cable. We assume that the charge carried
by Kt} through the Ioad R is distributed uniformly along the entire length
of the cable, and so

S

9

It d
d—t.—_—(L—)-_Il(z)_}. {tﬁ. (2.14)

The term dqp/dt takes account of the change in surface charge ad-
joining the cylinder r = r;. The extension of (1.20) to the transient case
is

dgo

— = —BJ (t),

= (2.15)

M
b= :trlzx—:a.

Here Kt) and ¢ are as in (2.6). We use (2.1) and (2.11)-(2.13) to
get for V(t) that

d B
&t TE=im O @318)

where B is defined by (1.25) and

1 1 2ln(a/r)  dlne
TH=%@ T cWRL @ 24D

If V(t = 0) = 0, the solution to (2.186) is

t t
ds J () B 7
V () = Bexp [—0 T—(&T-]o =) 5P [0 7@ :l ar. (2.18)

There is no difficulty in taking account of an external emf &(t) con-
nected as shown in Fig. 2. Let Ry be the internal resistance of the source;
then (2.1) is replaced by

yo—-2%@ (2.19)

O =

The above arguments then give for V(t) that

av i4 B 2In(rz/r1)
7;7+‘f1’(525(7)"’(t)+m$(”’ (2.20)
in which
1 1 21In (fz/fl) dlnse (2.21)

T O=70 TEORFBLT &

We naturally assume that o(t = 0) = 0, soat t = 0, wehaveV(1=0)=
= 6(t=0)=&y. Then

v =exp|- § r| %+
0

|3

+ (o[ 0+ T g )] exo| ' T o} @22
0

d
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Usually ¢ = const = &, and then
t .
V)= pexp [~ §T1<a)” o e’“’[STl(BJ o

+toome~ [ o)

[J

t ¢+
2ln(ra/r) ¢ 1 a7
{1 + L(R+ Ry) e () °XP U WJ dt } (2.23)
0

8. Consider a long cable in the quasi-stationary approximation. Let
&and R be the self-inductance and resistance of unit length of cable.
The x-axis lies along the axis of the cable, v(x,t) is the potential dif-
ference between the core and sheath, and c is the speed of light inva-
cuum. The voltage drop in an element dx is (3v/dx)dx and has two
components: the ohmic one Ri(z,?) dz and the one due to self-induc-
tion (&/c?) (94/8t) dz. Then

By Z oi

=R —F

(8.1)
Let q(x,t) be the charge per unit length of intemal cylinder. The

conservation of charge is expressed by
ar

i 84e
w=—m—h@ ) +50 (3.2)

Here Ij(x,t) is the current due to the conductivity o(x,t) per unit
length of core. We extend (2.12) and (2.13) to write for a long cable
that

¢, z)z_a(’; t)[ 1@ 0+ A, z)]
9(z,t) e(z, 1)
L ) =12 b T 0=ty (3.3)

where f(x,t) is defined by a function analogous 1o (2.10):

t
1o )= sgex [*OS%%?)]X
.

f 7 (=, ¢) exp [S 7 (wBB)] @4

We replace V(t) in (2.11) by —w(x, 1) to get

" (o, 0) -+ A, 1) In(ra ) ). (3.5)

— v (x, )=

An obvious extension of (2.15) is

17} t
i%:—bl(z, t). (3.6)



Then (3.3)~(3.6) allow us to put (3.2) as

av 61113(3: t)
@t [r(z 5t “] o+
2ngra/m)0i _ J (@Y
+ e (z, z)]l Y ) &N

System (3.1) and (8.7) is the basis for future calculations. Let ¢, be
the local speed of a signal along the cable, C the capacity per unit
length, and R* the wave impedance:

€
C=31; (refr)
(3.8)

Consider the case in which &(x,t) = const = g, o(X,t) = const = g,
I(x,t) = Kt); then (8.1) and (3.7) give

,,gaL

&: ra at+'%l_“0
3 18 B
b‘:+%+ﬁa— =— T ()=F (1) (8.9)

The left end of the cable is connected to a resister Ry and theright
end to a resistor Ry. Let Ly be the length of the cable. The boundary
conditions are

Ryi(0, )= — (0, ¢t), 2= 0;
Rui(Ly, 1) =v{Lg t), == Ly (3.10)
We take the initial conditions as zero:

i(z, 0) =10, »(z, 0)=0. (3.11)

The problem is solved via a Laplace transformation with respect to
time, i.e., we pass from the original ¢(x,t) to

oo,
o, 0+ aule, =\ o Hera 3.12)
0

The corresponding system for ij(x,p) and vy(x,p) is

d”1+( )i1=0.

. 1 1 diy
(P-i-?) ntw g =Fp). (3.13)

The boundary conditions for these are -

Rgir (0, p) = — w0, p), Ruia(Le, p) = va(Ly, P). 3.14)

The general solution to (3.13) is

i1(z, p)== A chaz + Asshaz,
p+1/nm\"
neen=—r (F572)
P
X {Arshaz + Azchow) 4 5 j‘L({’;{. (3.15)

Here A; and A, are arbitrary constants, while

=il ) (gl e

We take the part of the root that gives « > 0 for p> 0. Substitution
of (3.15) into (3.14) gives

T =350 cz »

Fy(p)
P+

v1 (Lo, p) =Ry X

chaLy — 1 (Ro/ B* PshalL,
X By F Ry chole T [(RoR1/ B) P+ R*P-1 shale

P={(p+1/0)p+1/m)]" 3.17)
We put
t Lq
y=17, 9=p, B=_r,
1\
p=aL, K:(qij;/n) (3.18)
Reverting to the originals, we have
R a-}-ico Fup)
1 i(r
v (Lo, l):m S equq+1 X
a—ico
{chp — 14 (Ro/ R*) Kshyldg (319

X “ReF Ryohp 1 [(BoRx/BY) K T R*E [ sht

As sh x is odd, the integrand is a function of one sheet. The inte-

_ gral of (3.19) is calculated along a vertical line in a plane of q to the

right of all poles in the integrand.
As B « 1 for a sufficiently short cable, the most substantial contri-
bution to the integral comes from poles with a finite value of q. We

" expand the numerator and denominator in (3.19) in powers of 8 to get

atico

1 1 Fi(p)dp
v (Lo, t)=1“""—r S‘ P —————'Pl( Tt =
a—ico
t
—_— __i_ e*i/'Tx T l’/Tldt- (3.20)
=T UTne (e T mat :
o
Here
~1____ 1 [21n(rz/r1) _1_ 1 17"!
1 +x eLloR T + _1; *
(g2 0111 3.21
723031, R:Ro+31. (-)
We put & = const, T = const in (2.18) to get
B i
vig= 5T S JyeTar,
0
4 1 2in{ra/ry)
F=%t ik - (8-22)

This solution coincides with (3.20) if y « 1. The example shows
that, for (2.18) to apply, we must have not only Ly < ¢;7 but also R* «
<« YRR;. In particular, if one end is open-circuited (e.g., Ry = =}, then
for Ly « ¢;7 we can use (2.18), since wave effects are then unimportant.

Without loss of generality we can consider only pulse irradiation:

JTO=8(),  Filp)=—- (3.23)

Here §(t) is a delta function. We envisage a long cable: 8 = Ly/¢;7 >
» 1. In (3.19) we replace ch ¢t and sh ¢t and e//2 > 1 to get
a-tico
Pt dp
p+1/v 1+ (R R)P?’

a—ioo

V(Lo 00, )= — o 3.24)

This formula does not contain Ry, i.e., v(Lg,t) isindependent of the
load at the left end for 8 > 1 and i(x, 1) becomes zerc far from the
right end. For simplicity we assume that Ry = R* (matched load). For
Ty> T we put

1 NG
p+ = =3, a:z ?-——:r‘l‘ >0.
We put the integral of (3.24) as
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B 1 aest ds
Lo o0, = 5— e Lo | e
(Lo o0, 1) 2ue { Vst 2us
_,1__ ests—{—u——v’s?ﬁ—hsdq .
23 52 4 Zus T
e Pt L@ - n =
B 1 /1 1 :
g |5 () Jw@—nw),
171 1
=5 (-5 )1>0, (3.26)

in which k(&) and I,(&) are Bessel functions of imaginary argument.
If ) < 7 we put

pLift=s a=1 I/u—1/1)>0,

The integral of (3.24) is transformed to

B -1 et ds
Moo D=y € T Vet

sta— VET das
+ 5w 2m e V& 2as dx}

— Lttt nE=

o[- 3 (345 | to@+ oy,

=—%
(A 8)ono
We use asymptotic formulas for % > 1:
ne=va=[t+g+o(3)].
h ‘”)zT/% = G0 (2] @27

These relations give us the asymptotes to the solution to (3.24)

v (Lo~ 00, t~» 00) =

- B __ ~yn| (L A\
__281/3?6 ‘![(T—Tl)t for >,

v (Ly~> o0, t — 00) =

1 1 -‘/Z
By [(__?>th for T,< T,

- o (3.28)

Let 7 = T, (the Heaviside case). If then Ry = R*, the integral of
(3.19) can be transformed to

X R*
v (Lo, t) = _;‘ F@)— TR T — )t —t)+

R*—R
galT) s R——g‘) ¢/ [ (8 — 2te) 1 (£ — 2lo)s (8.29)

in which t0‘ = Ly/c; is the time taken by a signal to travel along a cable
of length Ly:
1 a-tico 7 ( ) B 1
. g L3P B s N BT gy
f® =35 Swe" prijeP=—""¢¢ Sl(t)e dar,
0

a—1i

NE<0)=0, n(t>0=1 (3.30)

Still taking T = 7;, we abandon R; = R* and put
z t

1
P g =7"
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Ry, — R¥

hop= Ros T R¥ © Q = (o)1,

(8.31)

$0 P\g,1l < 1, [Q] > 1, and for pulse irradiation we get

BRye™Y" 1

v (Lo, t)-—*—mz—ﬁx

a-+ico

x S‘ i ot R¥) €% _ 2R*F L R*
[y eZZ — Q—-1

a—ico

Ry %. (3.32)

The point z = 0 is not singular, For Q > 0 the first~order poles lie
at

Zp = — 1t ln Q+imn (n=0, % 1,4-2,.), (3.33)

We replace the integral of (3.32) by the sum of the residues:

BRy U

(LO i)"‘ B(R +R*)Q ’/ X

o ignng

X Re {(V6+ W(VT—1) X T/m—+
n=g

l'r(zmtl);
} (3.34)

+ M VT—D(VT+Y 2 TR0 @ T
1f Q < 0, the poles lie at

n=—YeIn| Q|+ in(n+ 1Y) (n=10,+1, +2,..). (8.35)

The integral of (3.32) then becomes the sum

B1e

v (Lo, t)—lel B

= AR

XRB{Z | Ql—in(nt )
n==0

x [t gt 1e i+ hal L]} (3.36)

It is convenient to put (3,19) with I(t) = §(t) as follows for some
purposes:
ol R . 1 1 y 1 a+ico eizdz
”(")—_ste"p 7 ?T?{ t:l S z—i—mx

a—1i00

ch —14 (Ro/R*)Qsh 6

X - (3.37)
(Ro -+ Ry) ch 0 - [(RoRy / R*) Q + R*Q 1) sh §

(3.38)

a=(5)"

) 13-4,

We perform the transformation

1 1 _
z=-2—(w——~1—”—>, w=z+4+ V&1,

(8.39)

et r-og

which transfers the outer part of —1 < z <1 tothe exterior of unit circle
|wl > 1. Letinitially 7y > 7, i.e., w = +1. Then



— B8R t /11
v (Lo, t) = e (B, - B9 Fid B9 exp[— 5 (? -+ };)] X
a+-ico

X emld ot

a—1ico

(¥ — 1) [(w + Ao) € + Agw + 1] dw
(@ + Do) (@ + ha) €* — (who + 1) (whs +- 1)

(3.40)

Here Ay and A; are as in (3.31). The integral of (3.40) can also be
calculated along a vertical line to the right of the polesinthe integrand.
The integrand in (3.37) is of one sheet, so the integral of (3.40) equals
zero as taken on the circle fw|= 1 (which corresponds to double passage
on —1 <z <1 inthe z plane), and so in (3.40) we need take account
only of poles lying outside the unit circle fwl= 1. To find the poles
w = pel? we have

o oo (3] ]

_ Aope™® 4 1 hpe®® 1 1

' ; . 3.41
pe*® 4 Ao pet® 4 My @4

Ifp > 1(p <1), the right part of this equation is less (greater) in
modulus than unity, which means that cos ¢ < 0, i.e., all roots of
(3.41)lie inthe lefthalf-plane, Thesemicircle w = el? ~r/2 < ¢ <7/2
corresponds to double passage in 0 < z < 1, so the integral of (3.40)
along this semicircle is zero. Then the integral of (3.40) can be calcu-
lated along Re w = 0 except the part joining the points —i and i:

_ BR; NEIR
oo 0= o [ () X
o &( 1 .
xReSeZ(x x) (x-{-i)x
\ z
1
% (€® — 1) [(iz 4 o) & + ihgz + 1] dx
(iz 4 Ao} (i + A1) 2 — (ihox + 1) (IMgz + 1)
v 1
9——2—(x+;). (3.42)
Now let 7y < 7, i.e., w = =1; formula (3.37) transforms to
___ Bmy t /11
oo == gm0 | = % (7 )| X
a-ico .
1 . 13 I\Tw+ 1
xam | o0 [5(o )| S

(&® — 1) [ — ho) £° + how — 1] dw
(20 — ho) (0 — A1) €2® — (who — 1) (whi — 1)

(3.43)

The denominators in (3.40) and (3.43) differ only in the signs to Ag
and Xy, and the integral of (3.43) may be put as

w3 )]

e o [ (= )]t 5)

(€ — 1) [(ix — o) &® + ihox — 1] do
(iz — ho) (iz — M) €2 — (ihoz — 1) Mgz — 1)

v (Ly, )=

e:iz‘_’(x+ .i_) (8.44)

Returning to (3.37), we see that we may take the imaginary axis
Re z = 0 as the line of integration, so the integral of (3.37) may be put

as
B 1z T
1) =— — P i} 'Lsx
v (Lo, )=~ —Z-exp| 2(T | T)} S
0

R, (iz + o) sin vy — R* (1 — COS VY) ¥ dz
(R*/R)ycosvy+[(1+7)tr+(1—7)m1smvy Tta’
Y o s “e 4 11 1
y=V 2+ 1, y=(R*?(RR)7, rtE e

From (3.19) we readily find that, if Ry = R%,
v (Lo, 8} p,—oo == 7 (2L0s ) |p,—ps- (3.46)

We note by ¥(t) the solution v(Lg,t) for Ry = 0, Ry = R*, We now as-~
sume (purely formally) that we have a cable of length 2Ly, with the
parts 0 < x < Ly and ~Ly < x <0 having equal polarizations opposite in
sign. It can be shown that matched loads Ry = Ry = R* at x = :L, cause
the voltage at x = Lg to be ¥(t). The physical significance of these re-
lationships is obvious.

Finally we consider a thin cable, for which & » 1, and we can as-
sume that the fast electrons formed at any point in the dielectric move
in the direction of the y~-ray and strike the opposite metal surface. We
also assume that the range of the Compton electrons in the metal is so
small that we can neglect escape from the core and sheath. Here the
volume density of the absorbed y-rays can be found by replacing exp in
(1.3) and (1.6) by unity:

J
n,o=:, 3.4
=5 (3.4T)
where J denotes the total current, as in section 1. Since all the fast

electromsstrike either the core or the sheath, the dielectrichasa positive
charge, and (1.8) gives the charge density as

= 3.48
Po == = (3.48)
Unit length of the internal cylinder has the negative charge
= pps = — 5 3.
o Po M (3.49)

in which § 1s the area of the region in Fig. 1 defined by x < 0, {y[ < Iy
1 <= yME <1y, Withsine =1,/1, we have

S =rs?{a +sina cos o — s 7 (sin a)?]. (8.50)

The positive space charge of (3.48) and the negative charge of
(3.49) give a field having the potential

«,p(r):—% part 4+ Ciinr 4 Ca. (8.51)
in which
Cy = 353;2: [u, - sinacosa -+ —T;' (sin a}z] J. (3.52)

The potential difference V = y(r,) =y(r;) between the metal parts
may, by analogy with (1.25), be written as

V:EJ

B,,:___eomz? 9, {2 sin2a - 1 ) .
e cos? o —_—— 4+ sin%a ) In smal | (8.53)
All the remaining theory for thin cables may be derived from the
above if the B of (1.25) is everywhere 1eplaced by the B* of (3.53).
I am indebted to G. M. Gandel'man, F. M, Gudin, G. F. loilev,
and S. A. Kuchai for valuable discussions.
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